
DOCUMENT RESUME

ED 341 729 TM 017 924

AUTHOR Naizer, Gilbert
TITLE Basic Concepts in Generalizability Theory: A More

Powerful Approach to Evaluating Reliability.
PUB DATE Jan 92
NOTE 19p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (Houston,
TX, January-February 1992).

PUB TYPE Reports - Evaluative/Feasibility (142) --
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Error of Measurement; *Estimation (Mathematics);

*Generalizability Theory; Higher Education;
Interrater Reliability; Measurement Techniques;
*Research Design; Research Methodology; Test
Interpretation; *Test Reliability; Test Theory

ABSTRACT
A measurement approach called generalizability theory

(G-theory) is an important alternative to the more familiar classical
measurement theory that yields less useful coefficients such as alpha
or the KR-20 coefficient. G-theory is a theory about the
dependability of behavioral measurements that allows the simultaneous
estimation of multiple sources of error variance. If error influences
interact, as they often will, the G-theory estimates may be markedly
different from classical theory estimates. G-theory also
distinguishes between relative and absolute decisions. Finally
G-theory provides a mechanism for using estimated error variances for
alternative designs (D-studies) to help researchers develop a
measurement that minimizes error for a future study, but that is also
efficient. Some of the major advantages of G-theory are explained and
illustrated with a hypothetical study of 20 individuals given a
performance task on 3 occasions and assessed by 2 raters. Three
tables present data from the example. A five-item list of references
is included. (Author/SLD)

***********************************************************************

Reproductions supplied by EDRS ate the best that can be made
from the original document.

********************************v**************************************



g -theory U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

141..lia document has been reproduced as
received from the person or organization
originating it

C Minor changes have been made to improve
reproducton quald y

"PERMISSION TO REPrODUCE THIS
MATERIAL HAS BEEN GRANTED BY

6,/z.,96;e7 Mizeg

Points of view or Opinions staled in this docu TO THE EDUCATIONAL RESOURCES

merit do not necessarily represent official
OERI position or polity

INFORMATION CENTER (ERIC)."

CQ

t4P

ris4

Basic Concepts in Generalizability Theory:
A More Powerful Approach to Evaluating Reliability

rir4
Gilbert Naizer

Texas A&M University 77843-4232

Paper presented at the annual meeting of the Southwest

Educational Research Association, Houston, TX, January 31, 1992.

2
NTT PIIM/ MMII 11111 V



ABSTRACT

An important measurement approach called generalizability theory is

an importart alternative to the more familiar classical measurement

theory that yields less useful coefficients such as alpha, or the

KR-20 coefficient. G-theory allows the simultaneous estimation of

multiple sources of error variance. If error influences interact,

as they often will, then G-theory estimates may be markedly

different from classical theory estimates. G-theory also

distinguishes between relative and absolute decisions. Finally, G-

theory provides a mechanism for using estimated error variances for

alternativom designs (D-studies) to help the researcher develop a

measurement that minimizes error for a future study but that is

also efficient. The present paper explains generalizability theory

and some of its several major advantages.
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Generalizability theory (G-theory) is a theory about the

dependability of behavioral measurements. Dependability in this

sense is how accurately we can generalize from a person's observed

score on a test or other measure to the average score that person

would have received under all possible conditions that the test

user would be willing to accept. When the focus of measurement is

on presumed true differences in individuals, we assume that the

differences among an individual's scores under different conditions

are due to one or more sources of measurement error, and not to

changes in the individual. But a single person's score on one

occasion is not fully dependable. The score would usually be

different on other occasions, on other test forms, or with

different test administrators. G-theory provides a means for

determining and making decisions dealing with the dependability of

a measurement.

Although G-theory is a very powerful approach to assessing

reliability, most researchers are more familiar with the more

traditional theory, called classical theory, which yields

coefficients such as KR-20 or test-retest reliability. The present

paper explains the much more useful G-theory and its potential

benefits.

Advantages of G-Theory over Classical Theory

Shavelson, Webb, and Rowley (1989) use the analogy of

comparing simple ANOVA to factorial ANOVA to indicate some of the

differences between classical theory and G-theory. Some of these

fundamental differences between classical theory and G-theory have
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been noted by Shavelson et al.:

The concept of reliability, so fundamental to

classical theory, is replaced by the broader and

more flexible notion of generalizabilitv. Instead

of asking how accurately observed scores reflect

their corresponding true scores, generalizability

theory asks how accurately observed scores permit us

to generalize about a persons' behavior in a defined

universe of situations. (p. 922)

Classical theory considers only one source of variation at a

time. Test-retest reliability considers the occasion as the source

of error, internal consistency reliability considers the item as

the source of error, and parallel forms reliability considers the

form of the test as the source of error (Webb, Rowley & Shavelson,

1988). As Thompson (1991) emphasizes, most measurement classicists

unconsciously presume that these error sources overlap and also do

not interact to create additional new error variance.

A researcher may compute all three of the previously mentioned

classical theory reliabilities and find that in all three

measurements error comprises 10% of the score variance. Many

researchers would assume that thE ten percents are the same and

also not realize that an interaction between two or more of these

could readily create completely different additional sources of

measurement error.

In contrast, G-theory allows the estimation of the magnitude

of multiple sources of error simultaneously. G-theory also
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estimates interactive sources of measurement error not considered

in classical theory. These estimations allow the researcher to

determine to what extent the results of a measurement are

generalizable to a population, occasion, or other administrator,

etc., using what are called generalizability studies (G-studies).

In addition, using decision or D-studies, G-theory enables the

decision maker to use the G-study results to determine how many

occasions, administrators, test forms, etc. are required to obtain

dependable scores in the most efficient manner. For example, D-

studies may help a researcher decide "What measurement protocols

can I use to get a generalizability coefficient of at least .85?"

and, given this answer to this question, the researcher can also

decide which of the competing acceptable protocols is cheapest,

least intrusive, and so forth.

Although G-theory provides a generalizability coefficient, the

theory focuses on the "variance components" that index the

magnitude of each source of error (Shavelson, WIbb, and Rowley,

1989), and that are the actual basis for the calculation of

generalizability coefficients. These variance components allow the

researcher to determine the major sources of error variance when

making decisions ox generalizations.

Another strength of G-theory is the differentiation of

"relative" and "absolute" decisions. Relative decisions concern

the rank ordering of individuals, such as per( entile ranking on

achievement tests, and are not concerned with the actual score a

person receives. Absolute decisions are based on the absolute
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level of performance (actual score) of an individual. For example,

a certification test with a minimum passing score depends on the

number of items answered correctly, and not solely on how the

individual performed in relation to others taking the test. The

dependability of the scores for relative and absolute decisions may

not be the same, as will be explained shortly.

Multiple Sources of Error Variance

The foundation of G-theory is the definition of a universe of

admissible observations. This universe consists of all the

observations that the researcher is willing to treat as

interchangeable (e.g., a score on a different occasion) for the

purposes of making a decision. Within this universe are aspects of

measurement called facets. A facet is a single source of

measureme,t, with the levels of the facet (conditions) usually

being assumed to be infinitely large. For example, if the

researcher wishes to generalize from one test form to a larger set

of test forms, FORMS is a facet and the levels of the facet are all

"admissible" (i.e., acceptable) test forms. Measurement error is

present whenever a generalization from a particular measurement to

behavior within the larger universe is made.

The universe can be single-faceted, with the researcher

intending to generalize within only one source of error variation

(e.g., forms), or multi-faceted where the researcher intends to

generalize across several sources of error variation (e.g., forms,

occasions, and administrators). As an example of a single-facet

universe, consider an achievement test in which the students'
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achievement scores are based on the sample of items which is on the

test. The items universe consists of all possible achievement test

items of which those on the test are only a sample. Ideally, the

researcher wants to know each person's universe score; however, we

must use the test score to generalize from this particular set of

items to the student's "universe" of achievement scores.

This one-facet design has four sources of variability. These

variability sources are due to (a) systematic differences among

students (called the object of measurement), (b) differences in

item difficulty, (c) person x item interaction (some items are

easier for some students), and (d) random or unknown events. The

3rd and 4th variability sources cannot be separated and are lumped

together in a residual variaticA. The object of measurement is the

object about rhich the researcher wishes to generalize (usually

persons) xi therefore by definition creates what is considered

systematic variance. The facets, in this case items, contain error

variance. The systematic variance is due to differences in the

object of measurement presumed to be real, and is therefore

desirable, while the variances from the facets and their

interactions are presumed to not be real and to therefore be

measurement error.

A performance assessment task on which the students are rated

by multiple raters on multiple occasions represents a two-facet

design, with items and occasions as the facets. This design would

have seven sources of variability--one systematic source for

persons and six error sources--as reflected in Table 1. The six
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error variability sources consist of: (a) differences in raters,

(b) differences in occasion, (c) person x rater interaction (raters

may rate some students harder than others), (d) person x occasion

interaction (some students may do bette: on one occasion), (e)

rater x occasion interaction (raters may grade easier on one

occasion), and (f) residual--person x rater x occasion interaction

combined together with unmeasured or random events.

9



INSERT TABLE 1 ABOUT HERE.

7

Designs can obviously contain more than two facets with many

sources of variability. In any G-study, it is important that the

facets the researcher wishes to generalize over be included in the

study (Webb, Rowley, & Shavelson, 1988) and it should be noted that

the broader the universe of admissible observations, the greater is

the possibility of making an error in generalizing from the sample

to the universe (Shavelson & Webb, 1991, p. 10).

Designs can also be "nested", as when different test forms

consist of different sets of items (Shavelson & Webb, 1991).

Nested designs and fixed facets will not be covered in this paper,

but for a good discussion of these topics one can consult Shavelson

and Webb (1991).

Variance Components

Each source of variability from a study has an associated

variance called the "variance component". These variance

components are the focus of G-theory and can be estimated using the

Expected Mean Square (EMS) equations of the ANOVA procedure. The

statistical model and mathematical treatment for variance

components in G-theory can be found in Shavelson and Webb (1991).

Any analyses of variance computer program (SAS, SPSS, BMDP8V) can

be used to obtain the estimated variance components. In addition,

Crick and Brennan's GENOVA program has been developed specifically

for generalizability theory, and finds EMS equations, estimated

variance components, and generalizability coefficients.

1 0
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Consider the previously mentioned two facet design. This

hypothetical example will be used to present a numerical example in

which 20 individuals were administered a performance task on three

occasions. Two raters assessed the students performance on all

occasions. This situation represents a fully crossed design with

persons crossed with raters and occasions and is denoted as p x r

X O.

Table 2 gives the estimated variance components and the

percentage of the total variance for each. Negative estimated

variance components can occur, although negative variance is

conceptually impossible, since scores can never be less "spread

out" than not spread out at all. Negative estimates can arise

because of misspecification of the model or because of sampling

error (Shavelson & Webb, 1991). Several methods of dealing with

negative variance components have been developed (Shavelson, Webb

& Rowley, 1989). Our example is simplified because it does not

contain negative estimates.
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INSERT TABLE 2 ABOUT HERE.

The variance component for persons (.3645 from Table 2)

accounts for 39% of the total variance. This indicates that

persons systematically differed somewhat in their performance; this

is desirable variability since persons are the object of

measurement, i.e., persons are presumed to have legitimately

different scores. The next largest component, the residual (24%)

indicates that a large portion of the variance is due to either the

three-way interaction of the facets or variation sources that were

not measured in the study. The large component due to raters (11%)

is disturbing, indicating substantial disagreement across raters as

regards the performancl ratings of the students. The high rater x

occasion component indicates an inconsistency in raters' ratings on

different occasions. The variance component for persons x raters

shows that raters disagreed somewhat on the relative performance of

the students. These high variances due to raters and rater

interactions (29% of the total without including the residual) may

indicate that additional training for raters or a improved rating

system is needed.

The relatively low person x occasion variance component (5%)

indicates that the relative performance of students did not vary

greatly from occasion tu occasion. The smallest component,

occasion (3%), indicates that student performance did not differ

much by occasion. This result suggests that measuring performance

repeatedly at different times would not yield much improvement in

1 2
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measurement integrity.

The results from our example indicate that a larger portion of

the variability can be attributed to raters than to occasion. The

following section follows this example and describes how to use the

variance components to determine the dependability of scores.

Generalizability Coefficients

The variance components from the example can be used to

calculate classical reliability coefficients, but in G-theory, two

types of coefficients can be calculated and used in D-studies.

These coefficients, one for relative decisions (i.e., decisions

based on stability of ranks ignoring other consideration) and one

for absolute decisions (i.e., decisions against an absolute

standard such as a number-of-right-answers fixed criterion), are

calculated differently. For relative decisions, the error variance

is the sum of only the subset of components that affect the

relative standing of individuals. For a crossed design with, the

components that affect relative standing are those interactions

containing the object of measurement. In our example, p x r, p x

of andpxrxole are included. The main effects for raters and

occasions and the interaction between these two are ignored when

evaluating a relative decision since they do not contribute to the

relative standing of persons. For absolute decisions, on the other

hand, the error variance is the sum of all variance components

except that for the object of measurement itself.

For a given study, the researcher may be interested in either

a relative or absolute decision, or both. For purposes of

1 3
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demonstration, both will be discussed in this example. The

generalizability coefficient (p2rel) for relative studies (analogous

to the reliability coefficient in classical theory) is systematic

score variance divided by expected score variance. This is the

variance for the object o. measurement divided by the object of

measurem.lt variance plus the relative error variance

(a2p/(a2p+a2rei)). The relative decision error variance (a2rel) is a

summation of all interactions involving persons with each divided

by the number of conditions in each facet (.0467/3 + .0748/2 +

.2243/2x3), i.e., .0904. Using this value, the generalizability

coefficient (p2m) then is .3645/(.3645 + .0904) = .801.

For an absolute decision, all variance components except the

universe score variance are included in the summation. The

absolute error variance (eabs) for this example (.0128/2 + .0280/3

+ .0748/2 + .0467/3 + .0935/2x3 + .2243/2x3) is .1667. A

reliability-like coefficient for absolute decisions (0, phi) can be

calculated similar to the generalizability coefficient, using the

formula 0 = (a2p/(ep+a262)). This coefficient is not actually a

generalizability coefficient since the denominator is not the

observed-score variance and the coefficient does not approximate

the expected value of the squared correlation between observed and

universe score scores (Shavelson & Webb, 1991). The phi

coefficient for our example is .3645/(.3645 + .1667) = .686.

D-Studies

Decision studies allow the researcher to use the results from

the G-study to determine the number of occasions, raters, tests,

1 4
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etc. required for dependable scores. D-studies allow the

projection of alternative measurement designs by varying the number

of conditions of each facet and calculating variance components and

generalizability coefficients for each of the alternative designs.

The information from these alternative designs assists the decision

maker in designing future measurements. The alternative designs

and other information (e.g., relative costs of adding a rater or

occasion) are used concurrently in decisions about future studies.

Eason (1991) points out that a D-study cannot include facets that

were not included in the G-study, although a facet may be

eliminated.

D-study information from six alternative designs of our

example are presented in Table 3. Since raters create more error

variance than occasions, we expect that changing the number of

raters will have a greater effect on the generalizability and phi

coefficients than changing the number of occasions. From Table 3

we can see that adding 1 rater increases the generalizability

coefficient from .801 to .882 while adding 1 occasion causes a

change from .801 to .844 (phi coefficients behave similarly and for

simplicity will not be discussed here). Furthermore, doubling the

number of occasions to six does not produce as large an increase

(.801 to .878) as adding 1 rater. Perhaps an increase of one in

both occasion and rater produces the desired generalizability

coefficient level (.913).

The researcher determines the desired level for the

generalizability and phi coefficients. Then the researcher asks a

5
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series of "what if" questions exploring the effects of adding or

subtracting levels from the facets, until acceptable coefficients

are realized from one or more protocol. It should be kept in mind

that the improvement from adding additional levels diminish with

each addition. For example, adding the fourth rater produces only

40% of the effect of adding the third rater. Once several protocols

that yield acceptable coefficients are isolated, the researcher

selects the protocol that is most efficient or least cumbersome.

Summary

G-theory extends classical theory in several ways. The theory

allows the simultaneous estimation of multiple sources of error

variance. If error influences interact, as they often will, then

G-theory estimates may be markedly different from classical theory

estimates (Eason, 1991). G-theory distinguishes between relative

and absolute decisions and provides a generalizability estimate for

each type of decision. G-theory provides a mechanism for using

estimated error variances for alternative designs (D-studies) to

help the researcher develop a measurement that minimizes error for

a future study but that is also efficient. G-theory can be

implemented using several computer software packages (SAS, SPSS,

BMDP8V, GENOVA) and applied to a wide variety of designs.

According to Shavelson, Webb and Rowley (1989), G-theory

provides perhaps the most flexible measurement theory available to

psychologists. Thompson (1991, p. 1072) suggests that:

[T]oo few researchers recognize that in all analyses

we inherently invoke both a presumptive model of

reality and an analytic model. When the two don't



14

match, the analysis doesn't help us understand the

reality we believe exists. If we virtually always

want to generalize over time and over items or

tests, then a classical theory approach that never

simultaneously considers these two time and item

sampling influences, and completely ignores the

interactions of these influences, will be quite

simply unworkable!

The use of G-theory will increase if researchers become aware of

the important notion emphasized by Eason (1991): "only G-theory

honors a complex reality in which measurement error sources may

interact to compound each other!"

1 7
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Table 1
Sources of Variability in a Two-facet Design

Source of Variability

persons (p)
raters (r)
occasion (o)
p x r
p x o
r x o
pxrxo, e

Type of Variation

universe-score
rater difficulty
occasion difference
interaction
interaction
interaction
residual

Notation

Table 2
Estimated Variance Components forPXRX0 Design

Source Estimated Variance Component

persons
raters
occasion
pr
po
ro
prole

. 3645

. 1028

. 0280

. 0748

. 0467

. 0935

. 2243

Table 3
Alternative Design Variance Components and

Generalizability Coefficients

Percent

39
11
3

8

5

10
24

16

nr

no

G-study
2

3

D-study
2

4

2

6

3

3

3

4

4

3

4

5

p .3645 .3645 .3645 .3645 .3645 .3645 .3645

r .1028 .1028 .1028 .0685 .0685 .0514 .0514

o .0280 .0210 .0140 .0280 .0210 .0280 .0168

pr .0748 .0748 .0748 .0499 .0499 .0374 .0374

po .0467 .0350 .0234 .0467 .0350 .0467 .0280

ro .0935 .0701 .0468 .0623 .0468 .0468 .0281
prole .2243 .1682 .1122 .1495 .1122 .1122 .0337

a2r4 .0857 .0672 .0506 .0488 .0347 .0343 .0166
"2
% abs .1667 .1316 .1083 .0900 .0667 .0604 .0469

p 2 .801 .844 .878 .882 .913 .914 .956

0 .771 .735 .771 .802 .839 .858 .886
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